大家好,今天小编关注到一个比较有意思的话题,就是关于大数据 预测的问题,于是小编就整理了2个相关介绍大数据 预测的解答,让我们一起看看吧。
大数据的“4V”特征表明大数据不仅仅是数据海量,对于大数据的分析将更加复杂、更追求速度、更注重实效。数据量呈指数增长的同时,隐藏在海量数据的有用信息却没有相应比例增长,反而使我们获取有用信息的难度加大。以视频为例,连续的监控过程,可能有用的数据仅有一两秒。数据科学家必须借助预测分析软件来评估他们的分析模型和规则,预测分析软件通过整合统计分析和机器学习算法发挥作用。
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方而,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
IBM SPSS和SAS是两个数据科学家常用的分析软件。R项目则是一个非常流行的开源工具。如果数据量大到“大数据”的程度,那么还需要一些专门的大数据处理平台如Hadoop或数据库分析机如0racle的Exadata。
用数据预测,只能说是统计分析的算法问题。
而大数据的预测更多的是发现未知的规律和未知事物的联系。
因此,用大数据的预测更多的是发现事物的发展趋势,而不是预测准确的数值。
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流也越来越密切,生活也越来越便捷,然而大数据就是这个高科技时代的产物。阿里巴巴创办人马云曾经说过,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,这显示出大数据对于阿里巴巴集团来说是举足轻重的。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在于“大”,而在于“有用”。数据的价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据,发掘其潜在价值,才是赢得核心竞争力的关键。
研究大数据,最重要的意义是预测。因为数据从根本上讲,是对过去和现在的归纳和总结,其本身不具备趋势和方向性的特征,但是我们可以应用大数据去了解事物发展的客观规律、了解人类行为,并且能够帮助我们改变过去的思维方式,建立新的数据思维模型,从而对未来进行预测和推测。比如,商业公司对消费者日常的购买行为和使用商品习惯进行汇总和分析,了解到消费者的需求,从而改进已有商品并适时推出新的商品,消费者的购买欲将会提高。知名互联网公司谷歌对其用户每天频繁搜索的词汇进行数据挖掘,从而进行相关的广告推广和商业研究。
大数据的处理技术迫在眉睫,近年来各国政府和全球学术界都掀起了一场大数据技术的革命,众人纷纷积极研究大数据的相关技术。很多国家都把大数据技术研究上升到了国家战略高度,提出了一系列的大数据技术研发计划,从而推动政府机构、学术界、相关行业和各类企业对大数据技术进行探索和研究。
可以说大数据是一种宝贵的战略资源,其潜在价值和增长速度正在改变着人类的工作、生活和思维方式。可以想象,在未来,各行各业都会积极拥抱大数据,积极探索数据挖掘和分析的新技术、新方法,从而更好地利用大数据。当然,大数据并不能主宰一切。大数据虽然能够发现“是什么”,却不能说明“为什么”;大数据提供的是一些描述性的信息,而创新还是需要人类自己来实现。
到此,以上就是小编对于大数据 预测的问题就介绍到这了,希望介绍关于大数据 预测的2点解答对大家有用。