大家好,今天小编关注到一个比较有意思的话题,就是关于大数据分析的问题,于是小编就整理了4个相关介绍大数据分析的解答,让我们一起看看吧。
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。通过大量的统计了解大家的喜好,想要的东西,从而得到他们想要的,比如精准营销,征信分析,消费分析等等
大数据分析法是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性。大数据分析方法主要有5种,分别是:数据质量和数据管理、预测性分析、数据挖掘算法、可视化分析、语义引擎。
大数据分析的六个基本方面
1. Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5.Data Quality and Master Data Management(数据质量和数据管理)
大数据分析是指计算机根据已有的数据进行分析得出某个结论。
大数据分析的优点可以节省大量的人力物力,形成个性化的推荐。
大数据分析的缺点有存在信息质量参差不齐和隐私问题。。
到此,以上就是小编对于大数据分析的问题就介绍到这了,希望介绍关于大数据分析的4点解答对大家有用。