大家好,今天小编关注到一个比较有意思的话题,就是关于大数据概念的问题,于是小编就整理了3个相关介绍大数据概念的解答,让我们一起看看吧。
大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相 关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比 对,挖掘主效基因。例子还有很多。
大数据是什么及它的价值作用?
https://www.toutiao.com/i6766124438552314382/
大数据或称巨量资料,研究机构Gartner给出的定义是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。Katal等在其2013年的著作中将大数据描述为量大、多源、异构、复杂、增长迅速,无法用常规的方法处理的数据集合。许多数据往往只在统计学观点上具有某种相关性,而不一定像传统应用的数据那样具有严谨的因果关系。对这样的统计关系型数据,只有当反映一个真实问题的数据量达到能在一定程度的统计意义上描述其真实面貌时,才能有效地提取知识,支持决策。而对于常规的因果关系型数据来说,数量的大小往往仅影响到计算资源,而与提取知识的方法关系不大。
事实上,大数据与小数据之间并无绝对的界限,而是相对于目标问题而言的。大规模的数据量只是大数据概念的特征之一,但是并不应该以用海量的规模作为大数据的必要条件。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。目前大数据的发展前景非常不错,大数据的人才需求也在不断的扩大,现在是非常好的时机学习。
大数据的概念起源于美国,由思科、IBM、威睿、甲骨文等公司提议而发展起来的。从2009年开始,大数据开始成为互联网行业的热门词汇。
大数据是一个不断演变的概念,目前的兴起是由于从it技术到数据积累的巨大变化。当今世界,大数据无处不在,影响着我们的工作、生活和学习,并将继续发挥更大的影响力。
IDC将大数据技术定义为:“为更经济地从高频率的、大容量的、不同结构和类型的数据中获取价值而设计的新一代架构和技术。” 大数据的关键在于种类繁多、数量庞大、使用传统的数据分析工具无法在可容忍的时间内处理相应的数据。大数据分析主要涉及两个不同的领域:一是如何将海量的数据存储起来,二是如何在短时间内处理大量不同类型的数据,即解决大数据存储与大数据处理等问题
到此,以上就是小编对于大数据概念的问题就介绍到这了,希望介绍关于大数据概念的3点解答对大家有用。