hadoop 大数据,hadoop大数据技术原理与应用答案

网络知识学习网站 大数据 2023-12-21 06:22:10 0

大家好,今天小编关注到一个比较有意思的话题,就是关于hadoop 大数据的问题,于是小编就整理了2个相关介绍hadoop 大数据的解答,让我们一起看看吧。

Hadoop大数据框架的发展历程?

Hadoop的主要发展历程:

hadoop 大数据,hadoop大数据技术原理与应用答案

  · 2008年1月,Hadoop成为Apache顶级项目。

  · 2008年6月,Hadoop的第一个SQL框架——Hive成为了Hadoop的子项目。

  · 2009年7月 ,MapReduce 和 Hadoop Distributed File System (HDFS) 成为Hadoop项目的独立子项目。

  · 2009年7月 ,Avro 和 Chukwa 成为Hadoop新的子项目。

  · 2010年5月 ,Avro脱离Hadoop项目,成为Apache顶级项目。

  · 2010年5月 ,HBase脱离Hadoop项目,成为Apache顶级项目。

  · 2010年9月,Hive脱离Hadoop,成为Apache顶级项目。

  · 2010年9月,Pig脱离Hadoop,成为Apache顶级项目。

  · 2010年-2011年,扩大的Hadoop社区忙于建立大量的新组件(Crunch,Sqoop,Flume,Oozie等)来扩展Hadoop的使用场景和可用性。

Hadoop大数据框架的四个组成部分?

1、Hadoop 是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。 Hadoop的核心是HDFS和Mapreduce,hadoop2.0还包括YARN。 2、HDFS Hadoop的分布式文件系统。是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序。 3、MapReduce(分布式计算框架) MapReduce是一种计算模型,用以进行大数据量的计算。其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。 4、Hive(基于Hadoop的数据仓库)Hive定义了一种类似SQL的查询语言(HQL),将SQL转化为MapReduce任务在Hadoop上执行。通常用于离线分析。

到此,以上就是小编对于hadoop 大数据的问题就介绍到这了,希望介绍关于hadoop 大数据的2点解答对大家有用。

相关文章